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Continuous Spectrum of a Flange-Backed Slotted
Waveguide with Application

Tullio Rozzi, Fellow, IEEE, and Mauro Mongiardo

Abstract—The continuum of an open waveguide describes ra-
diation as simply, in principle, as the discrete spectrum of a
classical guide describes any physical field in it. This part of
the spectrum, however, has received little attention for guides
of nonseparable two-dimensional cross-sections. To illustrate
its derivation, in this contribution we establish the continuum
of a flange-backed rectangular waveguide slotted on its narrow
wall. As a demonstration for its use, we determine the trans-
mission and radiation properties of the junction between an or-
dinary and slotted guide.

INTRODUCTION

HE CLASSICAL method for determining the e.m.

field excited by a source in any closed waveguide is
to evaluate the modal amplitudes excited by the source by
means of Lorentz theorem or its equivalents [1, pp. 358-
362].

The same process can be followed in any open guide of
one-dimensional cross-section, say, a dielectric slab [2,
pp- 303-306, 1, pp. 485-495, pp. 538-546, 3], or a two-
dimensional separable one, say, an optical fiber. The
power distributes itself among bound modes, if any, and
a continuous orthonormal spectrum of real waves, bound
at infinity. The proper spectrum of the guide is not to be
confused with the ‘‘leaky modes’’ that are nonmodal,
nonorthogonal, complex solutions of the wave equation
(of the transverse resonance condition), growing at infin-
ity and, as such, unsuitable for representing the field ex-
cept in the immediate vicinity of the source.

For most guides of two-dimensional and nonseparable
cross-section, however, including, the classical slotted
waveguide, the continuous spectrum is not known. Ear-
lier contributions on the pure LSE/LSM continua of the
inset [4] and image [5] guide utilized a partial wave (spec-
tral) decomposition of the field in a transverse direction
of the guide cross-section. Each partial wave underwent
a different phase-shift according to its transverse wave-
number due to transverse diffraction and the total field was
then recomposed by superposition.

In this scheme, each partial wave did not individually
satisfy boundary and edge conditions in the transverse
cross-section, resulting in various drawbacks. In [6] the
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principle of a new approach was developed; this deal with
the fully hybrid case. It introduced the concept of a con-
tinuum of mutually orthonormal ‘‘packets’” of waves,
each packet traveling with the same propagation constant
along the guide, each individually satisfying boundary and
edge conditions in the cross-section. The latter formula-
tion, being essentially self-consistent with transverse dif-
fraction, is proving superior to the earlier one.

In the present contribution, we will reconsider the clas-
sical problem of rectangular waveguide slotted in its nar-
row wall, that was studied many years ago by various au-
thors as a ‘‘leaky’’ guide antenna and is described, for
instance, in [7], [8]. The simplicity of the geometry al-
lows insight in the operation of the new method with a
minimum of analytical detail.

In this case, just a continuous spectrum exists; once this
is derived, relying on [6] for general proofs, we demon-
strate its application to a practical problem by applying it
to the problem of determining transmission and radiation
properties of the junction between a flange-backed ordi-
nary guide and one slotted on its narrow wall.

ANALYSIS

The geometry under study is shown in Fig. 1. It con-
sists of a classical rectangular waveguide with a slot sym-
metrically placed on its narrow-wall (of zero thickness)
backed by a perfectly conducting flange.

If the excitation is a pure TE, i.e., by the fundamental
waveguide mode, this problem is describable in terms of
a single TE potential II, = z,¥,. Clearly, no bound so-
lutions are possible for this problem due to the presence
of the slot. We are looking for real solutions of the scalar
wave equation for E,, say,

Vie, + ke, =0 (1)
wherek,z=k§+k_%=k(27—32(05k,soo)isthe

transverse wavenumber and » labels different modes cor-
responding to the same k;; e, satisfies boundary and edge
condition pertaining to E, on the cross-section §, which
comprises that of the guide and the half-space x = 0 and
is finite at infinity. Moreover, the following orthonormal-
ization is imposed:

S e,(r; k)e, (r; k) dS = 8,6k, — k) @
N

with r = (x, y).
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Fig. 1. Geometry of a flange-backed rectangular waveguide with a sym-
metrical slot on its narrow wall.

The field we seek, e,, has different forms in the wave-
guide and in the air region and each is made up of a su-
perposition of plane waves such that k&> + kﬁ = k. The
form that holds in the waveguide is of the type

sin g, (x + a)
sin g,a

m@%@=M®%§ﬁM&M)

x < 0. (3a)

N, (k) is a normalization constant, E,, is the discrete
Fourier transform of the field in the slot pertaining to the
mode » for that value of &,; of course this field is identi-
cally zero on the flange plane. Moreover

2

1
- n

b

=2’4’ S
cu(y) =

0

in view of the symmetrical location of the iris on the side-
wall and

Form (3a) is the field excited in the guide by a given ap-
erture distribution E, (y; k). We will now write the cor-
responding form of the field excited in the air half-space
as

ke
e,(x, y; k) = N, (k) HO E,(ky; k)c(y; k)

) sin (k,x + a,(k))

dk
sin o, (k)

y

+ S E~V(ky7 k[)C(y, ky)e_lk‘lx dky:1
ki

2
c(y; k) = \/; cos ky,y

(3b)

where
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is the continuous analog of c,( y); k% + k§= K and

d
Bk = |

The above Fourier transform is taken just on the slot as
the field vanishes outside the slot on the flange plane.

In (3b) we distinguish two types of behavior in x of the
plane waves components:

i) k, < k,: standing waves in x in order to describe the
radiation incident from infinity on the slotted flange and
reflected back from it. In this context, the real quantity
o, (k) assumes the physmal meaning of the phase shift
imposed on the incident e *** component by the presence
of the slot and of the waveguide behind it. sin («,) = 0
corresponds to the flange being completely closed. Note
that the process of placing the generator at infinity and
considering standing waves is identical to that followed
in deriving the continuum of a slab waveguide [2].

ii) k, > k;: in this case only attenuated waves away
from the slot can exist in the air region.

Upon inspection of (3) we note that e, (k;) is completely
defined once we have determined the field on the aperture
E,(y; k;), the phase shift «,(k,) and the normalization
constant N, (k).

We shall now proceed to establish an eigenvalue equa-
tion that has E,( y; k,) as eigenfunction and «, as eigen-
value. This is obtained by requiring the continuity of the
H, component, h,(x, y; k,) corresponding to e,(x, y; k).

Modal TE fields can be derived from TE potentials

I, =2z,¥,e""

v

E(y; k)e(y; k) dy = {c, E,>. (4)

htu = _-JBVI\IIV

€p = —%ng X htv

€ =Y €n

h, = kY, (5)

Hence the relationship valid everywhere in the cross-sec-
tion is

h, = ktz S e, dx. 6)
J@ho
It is noted that a vanishing integration constant is required
in order to fulfill the boundary condition on the slot edge
and at infinity.
By substituting (3) into (6) and setting x = 0 we obtain
the following eigenvalue equation for «, (k)

ke _ (y, y)
wmwoaw> - dk,

cot g,a

E%@uw

n

< c(y; ky)
— —dk,. 7
Skx EV (ky7 kt) lkxl y ( )
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Its eigenfunction is the aperture distribution E,(y; k)
whose Fourier transform appears in (7).

If we introduce the total transverse admittance operator
for this cross-section, comprising the waveguide and the
air region,

Y(k) = Yur(k) + Vg (k) ®)
with
> cot g,a
ng(kl)Eu = ZI() -/ <Eya Cn) Cn(y) —_i_
3 "’ c(y; k)
Yair(kt)EV = <EV’ C> dk\
0 ” ’
(7 c(ys k)
+ E dk, 9
]Sk,<”’c> Tk ®)
the eigenvalue equation (7) can be rewritten as
cot a, (k) Re Y(k)E, = Im Y(k)E, (10)
with
Y=Re?—jIm?
or, equivalently,
Y(k)E, = N, Re Y(k)E, (11

with

AN =1—jcota,.

If Re Y(k,) vanishes, say, i.c., in absence of radiation,
then the standard transverse resonance condition is re-
covered, yielding the bound modes of the system. No such
solution is possible in this context, only solutions of the
type (3) with normalization (2) are proper, modal, solu-
tions.

From (10) or (11) it is easy to see that two solutions
E,, E, corresponding to the same value of k, are orthog-
onal over the aperture as

(E,.Re YE,» =5, (12)
implying these two solutions do not exchange power due
to the aperture.

By multiplying e, (k,), e, (k) by and integrating over the
cross section, under the condition that (10) holds we re-
cover the normalization condition (2) with

/2k
N,(k) = |- sin a, (k).
T

DISCRETIZATION OF THE EIGENVALUE EQuATION

(13)

An effective discretization of (10) into an ordinary ma-
trix eigenvalue problem is a key step in the process.
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We build in the edge condition by setting, for a sym-
metrically placed aperture,

N
€m Y
. — > 7 [ Z
E,,(y, kt) W(y) m=0,2 wd Xim L <d>

e =1;¢,=2:m>0 (14)

where x,, are the expansion coefficients and

1

ry

and the T,’s are the Chebyshev polynomials normalized
so that [9, p. 833]

w(y) =

Emeﬂ
. d

d
S LT, dy = 0. (15)
—d

With this position, one substitutes to ¥ the discrete ma-
trices

2 =
Im Ymk = kt 0.2 cot i PmnPkn
Who | n=0. , n 2
#- (%)
* Py (ky) Py (ky)
— S T kY dky (16)
ki k% -k
Re ¥ k}z Sk! Pm (ky)Pk(ky) (17)
€ Ly = T s )
¢ Who k,2 - kf !

where [9, p. 836]

P,k,) = < \/—; T,w, \f cos k ,y>

= V2¢,d (=)™, (k,d)

= <1 /frﬂd T,w, cn>
En€nTd 1/ nwd
— I

N b =D b

and (10) becomes a matrix eigenvalue equation of order
(N + 1) /2, capable of producing up to (N + 1) /2 eigen-
vectors.

As a particular case, consider the ‘¢
proximation, where

1
E,(y; k) = w(y) ,/ﬁ (To = D (18)

P mn

Il

small aperture’’ ap-
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independently of k, and » (10) becomes a scalar equation and we have

% COUgd g S“ Py (k,)
k

n=0.2 2 <n7r>2 " k§ -k g
2 _ (=
falk) = 2w _ ’ k% X (19)
co a(t -_ReYQO - ki ( ) ! b
S 7dky
o Vi - k,

the corresponding field outside and inside the guide is given by

/2k d| (" fz
e(r; k) = —;’~ So dk, - cos k,yJo (k,d) sin (kyx + o)
2 co
+ fﬂ sin o S dk, /— cos kyyJo(k,d) exp (— |k |x) [ x
. 3

’2kd d\ si +
e(r; k) = b sin o _22.10 <n7br >%T@cn(y): x=0 20

It is noted that the modes given by (20) are independent
of frequency and only dependent on the parameter k,.

v
=

and, by using in the above the appropriate expression for
the transform of the field (18) over the aperture
APPLICATION TO A SLOTTED GUIDE EXCITED BY

WAVEGUIDE
COS T

With reference to Fig. 2, we consider the problem of E, J- \/— dy
the junction between a flange-backed ordinary waveguide Td y
and one slotted as shown in Fig. 1; whose spectrum has 2)
been derived in the previous section. /

We neglect higher order mode excitation in the closed
guide as well as excitation of the open region for z < 0. €, 7d nwd

Atz =0, the E, component of the incident TE, wave- = b Jo b

guide mode can be decomposed in terms of the continuous
spectrum of the slotted guide we get

f2 . TX ® , .
eYIO = ;l; sm ; = SO A(kt)e(x’ ya kr) dkt (21) A(kt) 27[' k ab (k SI;l au (22)

0 b/2 2 X
Ak) = S_a dx S‘_(b/z) dy py sin — e(x v; k)
oo 0 . b/2
_ 2 + 1
= f%sina, 3 E,,(k,)S \ﬁsinr—xw——a—)dxg \/:c(y)dy
N7« n=0,2,-"" —a a a sin q,a ®/2)

with
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Fig. 2. Geometry of the transition between a closed and a slotted wave-
guide.
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The E, field at a distance z down the guide is then given
by

ko

Ey(r, ko) = SO dk, Ak)e(r, k) exp —jzvky — k;

+ Sk dk,A(k)e(r, k) exp —z thz - k%)
(23)

NuMeRricAL RESULTS

The behavior of sin « as obtained from (19) is reported
in Fig. 3. It should be noted that « depends only on the
guide aspect ratio a /b, relative slot aperture d /a, and on
k,a. In this case d /a = 1/22.86 As previously stated, the
real quantity o represents the phase shift imposed on the
incident e¢’* component by the presence of the slot and
of the waveguide behind it. When k, is zero, that is the
wave is directed along z, also sin « is zero. Moreover,
when waveguide resonances occur, that is when £, is equal
to the cutoff frequencies of the unperturbed guide, sin «
is again zero. These locations are given in Table I.

Once o has been determined it is possible to calculate
the modal fields inside and outside the guide according to
(20). The behavior of the electric field E| inside the wave-
guide is reported in Fig. 4 for different values of k, and
for an aperture d/a = 1/22.86. Due to the symmetry of
the structure only the upper half-plane (y > 0) has been
considered. It is possible to observe how the aperture, and
the metallic edge, affect the field distribution inside the
~ guide.

In Fig. 5 the electric field E, in the air region is plotted
for the same values of k,a in the proximity of the guide.
The oscillatory behavior of the field in the half space al-
lows (2) to be satisfied even for small differences between
k, and k. Also evident is the creation of a spherical wave
at a certain distance from the aperture as illustrated by
level curves in Fig. 6.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 40, NO. i, NOVEMBER 1992

1*}

0.5 T

sin o
=
1

Fig. 3. Behavior of the phase shift o as a function of k,a for a slotted
waveguide. The zeros of sin « correspond to the resonances of the guide
reported in Table I.

TABLE I
WAVEGUIDE RESONANCES OBTAINED BY USING

= 2 4 E>~
ka=m |m (b

(THESE VALUES CORRESPONDS TO THE ZEROS OF FIG. 3
WHERE a /b = 2.25)

m n=20 n=2
1 3.14 14.48
2 6.28 15.47
3 9.42 16.99
4 12.57 18.91
5 15.71 21.13
6 18.85 23.56
7 21.99 26.14

When the slotted waveguide is excited from a closed
one, the incident field is decomposed in terms of the con-
tinuous spectrum of the slotted waveguide. Each compo-
nent of the continuous spectrum is excited with different
amplitude, as given from (22). Fig. 7 shows the ampli-
tude of these componernts, 4 (k,), when the fundamental
mode is incident on a slotted guide with d/a = 1/22.86.

At any given frequency each mode, characterized by a
k, value, has a propagation constant 3 either real (propa-

~ gating mode) or imaginary (evanescent mode). For a fixed

k, the angle with the z-axis formed by the direction of
propagation of the mode in the air region is given by ¢ =
arctg (k,/B), while A (k,) determines its amplitude. A plot
relating the latter quantity to the angle ¢ is shown in Fig.
8 for different frequencies.

As expected, as the frequency increases the maximum
modal amplitude moves toward endfire. This can be ex-
plained by recalling the interpretation of the field inside
the waveguide as a superposition of two plane waves.
Each plane wave impinges on the narrow wall at an angle
with respect to the z direction that increases as the fre-
quency decreases.

It is obvious from the preceding figures the appearance
of a ‘‘leaky wave’’ corresponding to a peak of A (k) in
Fig. 7 and to a preferred angle of radiation as shown in
Fig. 8.
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Fig. 4. Modal electric field of the slotted waveguide for different values of k,a. The field is represented inside the guide, in the
region —a < x = 0,0 < y < b/2, where g and b are the waveguide dimensions.
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Fig. 5. Modal electric field of the slotted waveguide for different values of k,a. The field is represented in the air region, for
0 < x < 2a,0 =<y =< 2a, where a is the waveguide broad wall.
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Fig. 8. Radiation patterns on the plane xz [¢ = arctg (8/k,] for different

frequencies. The slot width is d/a

1/22.86.
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Fig. 9. Far field of the slotted waveguide on the plane xy obtained by
steepest descent calculation. The angle 8 is defined as in Fig. 1, and the
electric field is reported on the y-axis.

The far field of the slotted guide, obtained by the steep-
est descent calculation of the Appendix as given by (A3),
is plotted in Fig. 9 as a function of the angle O defined in
Fig. 1.

CONCLUSIONS

In this contribution the continuum spectrum of a flange-
backed rectangular waveguide slotted on its narrow wall
has been derived. This part of the spectrum, which up to
now has received little attention, describes radiation as
simply, in principle, as the discrete spectrum of a classi-
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cal guide describes any physical field in it. Numerical ex-
amples in the case of narrow slots have also been provided
as an illustration of the theory. As an example of the sim-
plicity of use of the above theory, the radiating properties
of the junction between an ordinary guide and a slotted
one have been investigated.

APPENDIX
FArR FIELD OF THE RADIATION MODES OF SLOTTED
' GUIDE

The radiative part of a continuous mode is given by the
first of the two integrals appearing in (3b). By substituting
in this formula the following standard transformation

x=rcosf k, =k cosb
y=rsinf k, =k sind (AD)
we obtain
N, [ ("
e, = \/i [S—k, E, cos kyy cos k.x dk,
; %
+ cot ay, S E, cos kyy sin k,x dky}
vat |: S o,k
=—|Re | E,e*Tcos b db
V27 c
+ cot a, Im S E,e™® cos 0 de} (A2)
c

where C denotes the appropriate path in the complex 6
plane defined by (A1) and

ki = (k. k), r=@9; k, - r=krcos(© — 0);

Hence by saddler point integration at © = 6, we obtain

the sought separation of radial and angular dependences,
namely:

sin (k,r — /4 + «a,)
sin a,

k,
e, = N, 7’E (6) cos 6 (A3)
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