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Continuous Spectrum of a Flange-Backed Slotted

Waveguide with Application
Tullio Rozzi, Fellow, IEEE, and Mauro Mongiardo

Abstract—The continuum of an open waveguide describes ra-

diation as simply, in principle, as the discrete spectrum of a

classical guide describes any physical field in it. This part of
the spectrum, however, has received little attention for guides

of nonseparable two-dimensional cross-sections. To illustrate
its derivation, in this contribution we establish the continuum
of a flange-backed rectangular waveguide slotted on its narrow
wall. As a demonstration for its use, we determine the trans-
mission and radiation properties of the junction between an or-
dinary and slotted guide.

INTRODUCTION

T HE CLASSICAL method for determining the em.

field excited by a source in any closed waveguide is

to evaluate the modal amplitudes excited by the source by

means of Lorentz theorem or its equivalents [1, pp. 358-

362] .

The same process can be followed in any open guide of

one-dimensional cross-section, say, a dielectric slab [2,

pp. 303-306, 1, pp. 485-495, pp. 538-546, 3], or a two-

dimensional separable one, say, an optical fiber. The

power distributes itself among bound modes, if any, and

a continuous orthonormal spectrum of real waves, bound

at infinity. The proper spectrum of the guide is not to be

confused with the “leaky modes” that are nonmodal,

nonorthogonal, complex solutions of the wave equation

(of the transverse resonance condition), growing at infin-

ity and, as such, unsuitable for representing the field ex-

cept in the immediate vicinity of the source.

For most guides of two-dimensional and nonseparable

cross-section, however, including, the classical slotted

waveguide, the continuous spectrum is not known. Ear-

lier contributions on the pure LSE/LSM continua of the

inset [4] and image [5] guide utilized a partial wave (spec-

tral) decomposition of the field in a transverse direction

of the guide cross-section. Each partial wave underwent

a different phase-shift according to its transverse wave-
number due to transverse diffraction and the total field was

then recomposed by superposition.

In this scheme, each partial wave did not individually

satisfy boundary and edge conditions in the transverse

cross-section, resulting in various drawbacks. In [6] the

Manuscript received April 25, 1991; revised January 2, 1992.
T. Rozzi is with the Dipartimento di Elettronica, ed Automatic, Univ-

ersity degli Studi di Ancona, Via Brecce Bianche, 60131 Ancona, Italy.
M. Moglardo is with the Dipartimento di Ingegnena Elettronica, Univ-

ersity di Roma ‘ ‘Tor Vergata, ” Rome, Italy.
IEEE Log Number 9202897.

.

principle of a new approach was developed; this deal with

the fully hybrid case. It introduced the concept of a con-

tinuum of mutually orthonormal “packets” of waves,

each packet traveling with the same propagation constant

along the guide, each individually satisfying boundary and

edge conditions in the cross-section. The latter formula-

tion, being essentially self-consistent with transverse dif-

fraction, is proving superior to the earlier one.

In the present contribution, we will reconsider the clas-

sical problem of rectangular waveguide slotted in its nar-

row wall, that was studied many years ago by various au-

thors as a “leaky” guide antenna and is described, for

instance, in [7], [8]. The simplicity of the geometry al-

lows insight in the operation of the new method with a

minimum of analytical detail.

In this case, just a continuous spectrum exists; once this

is derived, relying on [6] for general proofs, we demon-

strate its application to a practical problem by applying it

to the problem of determining transmission and radiation

properties of the junction between a flange-backed ordi-

nary guide and one slotted on its narrow wall.

ANALYSIS

The geomet~ under study is shown in Fig. 1. It con-

sists of a classical rectangular waveguide with a slot sym-

metrically placed on its narrow-wall (of zero thickness)

backed by a perfectly conducting flange.

If the excitation is a pure TE, i.e., by the fundamental

waveguide mode, this problem is describable in terms of

a single TE potential 11~ = z.~k. Clearly, no bound so-

lutions are possible for this problem due to the presence

of the slot. We are looking for real solutions of the scalar

wave equation for EY, say,

V~eU + ~ev = O (1)

where~=~+~=~– @2(O<kt<eo) is the
transverse wavenumber and u labels different modes cor-

responding to the same kt; ev satisfies boundary and edge

condition pertaining to EY on the cross-section S, which

comprises that of the guide and the half-space x > 0 and

is finite at infinity, Moreover, the following orthonormal-

ization is imposed:

1
eu(~; kt) eW(~; kl) d!l = 8VP6 (k~ – kO (2)

s

with z = (.x, y).
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Fig. 1. Geometry of a flange-backed rectangular waveguide with a sym-
metrical slot on its narrow wall.

The field we seek, e., has different forms in the wave-

guide and in the air region and each is made up of a su-

perposition of plane waves such that & + ~ = ~. The

form that holds in the waveguide is of the type

e, (x, y; IQ = N,(kt) ~=: ~ ~Vn(k) c. ( y)
sin q. (x + a).

sin qaa “

x <: 0. (3a)

N. (k,) is a normalization constant, E,. is the discrete

Fourier transform of the field in the slot pertaining to the

mode v for that value of /ct; of course this field is identi-

cally zero on the flange plane. Moreover

[[

2 mry
– Cos —
bb

n= 2,4,...

Gl(Y) = )

in view of the symmetrical location of the iris on the side-

wall and

()

2

q:=g– : ,

Form (3a) is the field excited in the guide by a given ap-

erture distribution E, ( y; /ct). We will now write the cor-

responding form of the field excited in the air half-space

as

[!

kr

e, (x, y; IQ = NV (IQ ~ EV(kY; kf) C( y; Q

sin (kXx + ap (k,)) ~k.—
sin a. (kt)

y

!
03

+ -Z(~y;Q C(y; IQ e
-Ik,lx &

k,
Y1

(3b)

where

J2
C(y; kY) = — COSkYy

T

is the continuous analog of c. ( y); ~ + ~= ~ and

[

d

~(rkY; k,) = _~ E,(y; kt)c(y; ky) @ = (C, -%). (4)

The above Fourier transform is taken just on the slot as

the field vanishes outside the slot on the flange plane.

In (3b) we distinguish two types of behavior in x of the

plane waves components:

i) Iq < kt: standing waves in x in order to describe the

radiation incident from infinity on the slotted flange and

reflected back from it. In this context, the real quantity

a. (kt) assumes the physical meaning of the phase shift

imposed on the incident e jk ‘X component by the presence

of the slot and of the waveguide behind it. sin (oQ = O

corresponds to the flange being completely closed. Note

that the process of placing the generator at infinity and

considering standing waves is identical to that followed

in deriving the continuum of a slab waveguide [2].

ii) kY > kf: in this case only attenuated waves aw~ay

from the slot can exist in the air region.

Upon inspection of (3) we note that e, (k,) is completely

defined once we have determined the field on the aperture

EU( y; k,), the phase shift a, (kt) and the normalization

constant N, (k,).

We shall now proceed to establish an eigenvalue equa-

tion that has E, ( y; kt) as eigenfunction and a, as eigen-

value. This is obtained by requiring the continuity of the

HZ component, h. (x, y; k,) corresponding to e, (x, y; k,).

Modal TE fields can be derived from TE potentials

IIy = ~09Ve-J@Z

~,. = –jfiV,?lV

Hence the relationship valid everywhere in the cross-sec-

tion is

(6)

It is noted that a vanishing integration constant is required

in order to fulfill the boundary condition on the slot edge

and at infinity.

By substituting (3) into (6) and setting x = O we obtain

the following eigenvalue equation for a. (k,)

!
k,

C( Y; ky)
cot (xV(kt) ~, (kY> kt) k dkv

o .X

= ~;.& (k,) Cm( y) =

I

‘x
c( Y; ky)

—
‘“(k” “) lkXl ‘ky”

(7)
k,
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Its eigenfunction is the aperture distribution E,, ( y; k,)

whose Fourier transform appears in (7).

If we introduce the total transverse admittance operator

for this cross-section, comprising the waveguide and the

air region,

f(kt) = Pa,,(k,) + Pwg(k,)

with

cot q.a
f.g (kt)E. = ~:. ‘j (E., c,, ) c.(Y) —

qrl

!
k,

C( y; Q
f~i,(kt)EU ~ o (Ep, c) ~ dky

.r

1

co
c(y; kv) dk,

+j
k,

(E.> c) ,k,l ]

the eigenvalue equation (7) can be rewritten as

cot CYV(k,) Re ~(k,) E, = Im ~(kr) Ev

with

~=Re~–jIm~

or, equivalently,

~(kt) EU = AU Re ~(k,) E.

with

h,=l–jcotaU.

(8)

(9)

(lo)

(11)

If Re ~(kt) vanishes, say, i.e., in absence of radiation,

then the standard transverse resonance condition is re-

covered, yielding the bdund modes of the system. No such

solution is possible in this context, only solutions of the

type (3) with normalization (2) are proper, modal, solu-

tions.

From (10) or (11) it is easy to see that two solutions

Ep, E. corresponding to the same value of k, are orthog-

onal over the aperture as

(E,, Re fEU) = 6FV (12)

implying these two solutions do not exchange power due

to the aperture.
By multiplying eu(k,), e~ (k;) by and integrating over the

cross section, under the condition that (10) holds we re-

cover the normalization condition (2) with

N, (k,) =
r

2k,
— sin a. (kf].
T

(13)

DISCRETIZATION OF THE EIGENVALUE EQUATION

An effective discretization of ( 10) into an ordinary ma-
trix eigenvalue problem is a key step in the process.

We build in the edge condition by setting, for a sym-

metrically placed aperture,

,,,:o,2&4;)EU(y; k,) = VV(y) ~

q) = 1; cm =2:m>0 (14)

where x~ are the expansion coefficients and

and the T,.’s are the Chebyshev polynomials normalized

so that [9, p. 833]

G
~ (~,,, w~,)

With this position,

trices

one substitutes to ~ the discrete ma-

::o[n:o.2da,mf1phIlymk=A ~

!mpm(Q ‘k (Q
—

k - ‘k’

1

@

!

“ pm (k)) ‘k (ky) dk
Re ~,,~ = —

@po o -Y

where [9, p. 836]

‘(k)=(hTmw$cOsky)

= ~d (- @’/’)JW(kyd)

Pn,,=(&Tnwc)

(16)

(17)

and (10) becomes a matrix eigenvalue equation of order

(N + 1)/2, capable of producing up to (N + 1)/2 eigen-

vectors.

As a particular case, consider the “small aperture” ap-

proximation, where

JEv(y; k,) = W(y) + (T. = 1) (18)
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independently of kf and v (10) becomes a scalar equation and we have

Im Ym
~K - \y)

cot a(kr) == — = k,#~
Re Ym

!

“ P?i(kY) dkY

o-

the corresponding field outside and inside the guide is given by

1-Ik,lx) : x >0

(19)

It is noted that the modes given by (20) are independent

of frequency and only dependent on the parameter kl.
and, by using in the above the appropriate expression for

the transforin of the field (18) over the aperture
APPLICATION TO A SLOTTED GUIDE EXCITED BY

WAVEOUIDE

With reference to Fig. 2, we consider the problem of

the junction between a flange-backed ordinary waveguide

and one slotted as shown in Fig. 1; whose spectrum has

.n=gcd$[~yd,

l–~

been derived in the previous section.
/

We neglect higher order mode excitation in the closed

guide as well as excitation of the open region for z c O.

At z = O, the EY component of the incident TEIO wave-

guide mode can be decomposed in terms of the continuous

.RJo(~) d

spectrum of the slotted guide we get

ey,,=$sin~= ~~ A (k,) .(x, y, k,) dkl (21)

with

Fd sin CYU
A(kt) = 27r kta–

b (k,a)2 – m2”
(22)

r2kt
o

!J

b/2
7rx sin q. (x + a)

i En (k,) : ~
!{

1
. — sin ctv sin — ah

T
~ c.(y)dy

~= o,’’,... —a sin q.a –(b/’)
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Fig. 3. Behavior of the phase shift a as a function of k, a for a slotted

waveguide. The zeros of sin a correspond to the resonances of the guide

reported in Table 1.

Fig. 2. Geometry of the transition between a closed and a slotted wave-
guide. TABLE I

WAVEGUIDE RESONANCES OBTAINED BY USING

The E,, field at a distance z down the guide is then given

by

sko

EY(~, kO) = dk,A (k,) e (K, k,) exp ‘~z ~
o

!
co

+ dk,A (k,) e(~, k,) exp –z -
ko

(23)

NUMERICAL RESULTS

The behavior of sin u as obtained from (19) is reported

in Fig. 3. It should be noted that a depends only on the

guide aspect ratio a/b, relative slot aperture d/a, and on

k,a. In this case d/a = 1 /22.86 As previously stated, the

real quantity a represents the phase shift imposed on the

incident e ‘kxX component by the presence of the slot and

of the waveguide behind it. When kt is zero, that is the

wave is directed along Z, also sin a is zero. Moreover,

when waveguide resonances occur, that is when kt is equal

to the cutoff frequencies of the unperturbed guide, sin CY

is again zero. These locations are given in Table 1.

Once a has been determined it is possible to calculate

the, modal fields inside and outside the guide according to

(20). The behavior of the electric field EY inside the wave-

guide is reported in Fig. 4 for different values of k, and

for an aperture d/a = 1122.86. Due to the symmetry of
the structure only the upper half-plane (y > 0) has been

considered. It is possible to observe how the aperture, and

the metallic edge, affect the field distribution inside the

guide.

In Fig. 5 the electric field EY in the air region is plotted

for the same values of k,a in the proximity of the guide.

The oscillatory behavior of the field in the half space al-

lows (2) to be satisfied even for small differences between

k~ and k:. Also evident is the creation of a spherical wave

at a certain distance from the aperture as illustrated by

level curves in Fig. 6.

J ()kta=w m’+ ~

(THESE VALUES CORRESPONDS TO THE ZEROS OF FIG. 3

WHERE a/b = 2.25)

m n=O ~=2

1 3.14 14.48

2 6.28 15.47

3 9.42 16.99

4 12.57 18.91

5 15.71 21.13

6 18.85 23.56

7 21.99 26,14

When the slotted waveguide is excited from a closed

one, the incident field is decomposed in terms of the con-

tinuous spectmm of the slotted waveguide. Each compo-

nent of the continuous spectrum is excited with different

amplitude, as given from (22). Fig. 7 shows the ampli-

tude of these components, A (kt), when the fundamental

mode is incident on a slotted guide with d/a = 1/22.86.

At any given frequency each mode, characterized by a

k, value, has a propagation constant ~ either real (propa-

gating mode) or imaginary (evanescent mode). For a fixed

k, the angle with the z-axis formed by the direction of

propagation of the mode in the air region is given by @ =

arctg (kt/(3), while A (kf) determines its amplitude. A plot

relating the latter quantity to the angle @ is shown in Fig.

8 for different frequencies.
As expected, as the frequency increases the maximum

modal amplitude moves toward endfire. This can be ex-

plained by recalling the interpretation of the field inside

the waveguide as a superptmition of two plane waves.

Each plane wave impinges on the narrow wall at an angle

with respect to the z direction that increases as the fre-

quency decreases.

It is obvious from the preceding figures the appearance

of a “leaky wave” corresponding to a peak of A (kt) in

Fig. 7 and to a preferred angle of radiation as shown in

Fig. 8.
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Fig. 6. Contour plots of the same modal fields represented in Fig. 5. The creation of a spherical wave is evident.
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Fig. 7. Amplitude of the modal fields (continuous spectrum) excited by an

incident TEIO. The slot width is d/a = 1/22.86.
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Fig. 8. Radiation patterns on the plane xz [o = arctg (6/k,] for different
frequencies. The slot width is d/a = 1722.86.
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Fig. 9. Far field of the slotted waveguide on the plane xy obtained by

steepest descent calculation. The angle d is defined as in Fig. 1, and the

electric field is reported on the y-axis.

The far field of the slotted guide, obtained by the steep-

est descent calculation of the Appendix as given by (A3),

is plotted in Fig. 9 as a function of the angle e defined in

Fig. 1.

CONCLUSIONS

In this contribution the continuum spectrum of a flange-

backed rectangular waveguide slotted on its narrow wall

has been derived. This part of the spectrum, which up to

now has received little attention, describes radiation as

simply, in principle, as the discrete spectrum of a classi-
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cal guide describes any physical field init. Numerical ex-

amples in the case of narrow slots have also been provided

as an illustration of the theory. As an example of the sim-

plicity of use of the above theory, the radiating properties

of the junction between an ordinary guide and a slotted

one have been investigated.

APPENDIX

FAR FIELD OF THE RADIATION MODES OF SLOTTED

GUIDE

The radiative part of a continuous mode is given by the

first of the two integrals appearing in (3b). By substituting

in this formula the following standard transformation

x=rcos O kX=ktcos O

y=rsind kY=k, sin(3

we obtain

[!
k,_—

‘u- % -k

~v COSkYy COS kXx dkY

I

k,

+ cot O!u RU cos kYy sin kXx dkY
–IQ 1

NUk,—_—
[JJGRec

Eue-i’c cos O d(3

+ cot CYvIm
1

Eue-i’c cos b’ d6
c 1

(Al)

(A2)

where C denotes the appropriate path in the complex 8

plane defined by (Al) and

& = (kX, kY); I = (x, y); &t “ z = k.rcos @ – @);

Hence by saddler point integration at El = 0, we obtain

the sought separation of radial and angular dependence,

namely:

Jkt
; l?. (e) Cos e

sin (ktr – 7r/4 + au)
ev = NV (A3)

sin a.

REFERENCES

[1] R. E. Collin, Field Theory of Guided Waves. New York: IEEE Press,

1990.
[2] N. Marcuvitz and L. Felsen, Radiation and Scattering of Waves. En-

glewood Cliffs, NJ: Prentice-Hall, 1973.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

T. Tamir and A. A. Oliner, “Guided complex waves, I field at an
interface, ” Proc. Inst. Elec. Eng., vol. B-1 10, p. 325, Feb. 1963.
T. Rozzi and L. Ma, “Mode completeness, normalization and Green’s

function of the Inset Dielectric Guide, ” IEEE Trans. Microwave The-

ory Tech., vol. 36, pp. 542-551, Mar. 1988.

T. Rozzi and J. Kot, <‘The complete spectrum of Image line, ” IEEE

Trans. Microwave Theory Tech., vol. 37, pp. 868-874, May 198’9.
T. Rozzi and P. Sewell, “The continuous spectrum of open wave-
guides of non-separable cross-section, ” to be submitted for publica-

tion.
R. E. Collin and F. J. Zucker, Eds., Antenna Theory, Part I and II.
New York: McGraw-Hill, 1969, ch. 14,19, and 20.
C. H. Walter, Traveling Wave Antennas. New York: McGraw-Hill,
1965.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and

Products. New York: Academic Press, 1980.

Tullio Rozzi (M’66-SM’74-F’90) was born in Italy in 1941. He obtained

the degree of’ ‘dottore” in physics from Piss University in 1965, the Ph.D.
degree in electrical engineering from Leeds University in 1968, and the
D. SC. degree from the University of Bath in 1987.

From 1968 to 1978 he was a Research Scientist at the Philips Research

Laboratories, Eindhoven, The Netherlands, having spent one year, 1975

at the Antenna Laboratory, University of Illinois, Urbana. In 1978 he was

appointed to Chair of Electrical Engineering at University of Liverpool,
U. K., and subsequently was appointed to the Chair of Electronics and l-tead
of the Electronics Group at the University of Bath in 1981. From 1983 to

1986 he held the additional responsibility of Head of School of Electrical
Engineering at Bath. Since 1986 he has held the Chair of Antennas at the
Faculty of Engineering, University of Ancona, Italy, while remaining a
Visiting Professor at Bath.

In 1975 Dr. Rozzi was awarded the Microwave Prize by the Microwave
Theory and Techniques Society of the IEEE. He is a Fellow of the IEE

(U. K.)

Mauro Mongiardo received the ‘ ‘Laurea” de-
gree from the University of Rome and the Ph.D.

from the University of Bath, U.K.
He is currently an Associate Professor at the

University of Palermo, Italy. Since 1983 he has
been engaged on microwave radiomehy and in-
verse problems and in 1987 he was consultant of

the Elettronica S.p. A. in the experimental vali-
dation of a four-channel radiometer developed for
temperature retrieval of biological bodies.

In 1988 he was a reciuient of a NATO-CNR

research scholarship during which he was visiting researcher at the Uni-

versity of Bath (U.K.). In the summer of 1992 he was a visiting scientist
at the University of Victoria, BC, Canada, working on time-domain anal-

ysis of MMIC. He is currently working in the modeling and compnter-
aided design of microwave and millimeter wave guiding structure and an-
tennas, and in the modeling of discontinuities in MMIC and CPWS.


